(y^2-18-y)+(10=4y-5y^2)

Simple and best practice solution for (y^2-18-y)+(10=4y-5y^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (y^2-18-y)+(10=4y-5y^2) equation:



(y^2-18-y)+(10=4y-5y^2)
We move all terms to the left:
(y^2-18-y)+(10-(4y-5y^2))=0
We get rid of parentheses
(10-(4y-5y^2))+y^2-y-18=0
We calculate terms in parentheses: +(10-(4y-5y^2)), so:
10-(4y-5y^2)
determiningTheFunctionDomain -(4y-5y^2)+10
We get rid of parentheses
5y^2-4y+10
Back to the equation:
+(5y^2-4y+10)
We add all the numbers together, and all the variables
y^2-1y+(5y^2-4y+10)-18=0
We get rid of parentheses
y^2+5y^2-1y-4y+10-18=0
We add all the numbers together, and all the variables
6y^2-5y-8=0
a = 6; b = -5; c = -8;
Δ = b2-4ac
Δ = -52-4·6·(-8)
Δ = 217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{217}}{2*6}=\frac{5-\sqrt{217}}{12} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{217}}{2*6}=\frac{5+\sqrt{217}}{12} $

See similar equations:

| 20x-4=2x+5 | | 2x+(4x+24)=180 | | 5/3(9x+6)=11+4x | | 8x-44=0 | | 11x-12=8x+5 | | 932-x=432 | | 256+x=942 | | 8n+4=598 | | 15+3x=75 | | -6=-3x=12 | | 1.5(y+4)=7.5y–9 | | 6x-15=x+6 | | 15x+50=10 | | 28.59(x)=130 | | (y-4)+y=140 | | ​​f/6=2.5 | | 6x+3=2x+19x | | (2x+4)(3x-4)= | | 3^x2-1=134 | | 3Ѩx2-1=134 | | 462+x=931 | | 1296-x=4922 | | (x+1)÷4=(4x-3)÷2 | | x=16x-44x | | 7a-12=7a-12 | | (3m+4)(7m+6)=0 | | x-396=242 | | 4x-47/10=x-5 | | 9(x─5)─4(2x+3)=20 | | 6a-22=2(2a-14)+2a+6 | | 23=y–261 | | 439+x=632 |

Equations solver categories